(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, empty) → g(z0, empty)
f(z0, cons(z1, z2)) → f(cons(z1, z0), z2)
g(empty, z0) → z0
g(cons(z0, z1), z2) → g(z1, cons(z0, z2))
Tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
S tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c3
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, empty) → c(G(z0, empty))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [1] + x1 + x1·x2
POL(G(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = 0
POL(empty) = [1]
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, empty) → g(z0, empty)
f(z0, cons(z1, z2)) → f(cons(z1, z0), z2)
g(empty, z0) → z0
g(cons(z0, z1), z2) → g(z1, cons(z0, z2))
Tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
S tuples:
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
K tuples:
F(z0, empty) → c(G(z0, empty))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c3
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [4]x1 + [5]x2
POL(G(x1, x2)) = [2] + [4]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [4] + x1 + x2
POL(empty) = [5]
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, empty) → g(z0, empty)
f(z0, cons(z1, z2)) → f(cons(z1, z0), z2)
g(empty, z0) → z0
g(cons(z0, z1), z2) → g(z1, cons(z0, z2))
Tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
S tuples:none
K tuples:
F(z0, empty) → c(G(z0, empty))
F(z0, cons(z1, z2)) → c1(F(cons(z1, z0), z2))
G(cons(z0, z1), z2) → c3(G(z1, cons(z0, z2)))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c3
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))